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Figure 1: λ-ECLIPSE can estimate subject-specific image embeddings while maintaining the balance
between concept and composition alignment in a resource-efficient way.

Abstract

Despite the recent advances in personalized text-to-image (P-T2I) generative mod-
els, it remains challenging to perform finetuning-free multi-subject-driven T2I in
a resource-efficient manner. Predominantly, contemporary approaches, involving
the training of Hypernetworks and Multimodal Large Language Models (MLLMs),
require heavy computing resources that range from 600 to 12300 GPU hours of
training. These subject-driven T2I methods hinge on Latent Diffusion Models
(LDMs), which facilitate T2I mapping through cross-attention layers. While LDMs
offer distinct advantages, P-T2I methods’ reliance on the latent space of these
diffusion models significantly escalates resource demands, leading to inconsistent
results and necessitating numerous iterations for a single desired image. In this
paper, we present λ-ECLIPSE , an alternative prior-training strategy that works in
the latent space of a pre-trained CLIP model without relying on the diffusion UNet
models. λ-ECLIPSE leverages the image-text interleaved pre-training for fast and
effective multi-subject-driven P-T2I. Through extensive experiments, we establish
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that λ-ECLIPSE surpasses existing baselines in composition alignment while pre-
serving concept alignment performance, even with significantly lower resource
utilization. λ-ECLIPSE performs multi-subject driven P-T2I with just 34M param-
eters and is trained on a mere 74 GPU hours. Additionally, λ-ECLIPSE demon-
strates the unique ability to perform multi-concept interpolations.

1 Introduction

The field of text-to-image (T2I) diffusion models has recently witnessed remarkable advancements,
achieving greater photorealism and enhanced adherence to textual prompts. This has catalyzed
the emergence of diverse applications, notably subject-driven personalized T2I (P-T2I) models. In
particular, this encompasses the intricate task of learning and reproducing novel visual concepts or
subjects in varied contexts requiring high concept and compositional alignment. The complexity
escalates further when multi-subject personalization is desired.

Early works employed concept-specific optimization strategies involving fine-tuning certain parame-
ters within T2I diffusion models [11, 39, 20, 48, 12]. Although these methods achieve state-of-the-art
(SOTA) performance, they struggle with generalization and are time-intensive. Contemporary re-
search is pivoting towards fast personalization techniques. Within this paradigm, there are two
types of popular approaches: 1) Methods that involve training hypernetworks and integrating new
layers or parameters within pre-trained diffusion UNet models [50, 52, 47, 43, 40], and 2) MLLM-
based learning of prior models that focuses on leveraging text-latent space of frozen diffusion UNet
model [30, 46].

The hypernetwork-based strategy achieves single-concept customization but has not been extended
to multi-concepts. Moreover, when combined with additional control (i.e. Canny edge map), they
struggle to maintain the concept alignment (∼30% drop in performance; Section 4) and strongly
favor the edge map. At the same time, MLLM-based approaches can perform fast multi-concept
customization but require heavy computing resources. In Table 1, we provide the overview of various
single and multi-concept customization methodologies in terms of total parameters, iterations, and
GPU hours required to train the models. It can be observed that multi-concept customization method-
ologies further increase the resource requirements. For instance, Kosmos-G [30] consumes 18x more
resources than IP-Adapter [52]. And Emu2 [46] requires training of 19x more parameters compared
to Kosmos-G. Hence, despite MLLMs’ seemingly useful scenarios it is not viable to blindly train
them. Therefore, in this work, we focus on answering one question: What are the alternative
methodology and design choices we can make to improve resource efficiency?

Upon further investigation, we find that most subject-driven T2I approaches build upon variants of
the Latent Diffusion Model (LDM) [38], specifically Stable Diffusion models. These LDMs employ
cross-attention layers to condition diffusion models with text embeddings, necessitating a mapping
of target subject images to latent spaces compatible with the diffusion models at the prior training
stage. This is also known as score distillation instruction tuning for MLLMs [30]. As there is no
choice but to learn this text-to-image diffusion latent space, it involves backpropagation through the
entire diffusion model often comprising over a billion parameters, contributing to the inefficiency of
existing P-T2I methods.

To improve the resource efficiency for multi-concept image generation, we present λ-ECLIPSE 1,
which leverages the properties of UnCLIP T2I models (e.g. DALL-E 2 [35] and Kandinsky v2.2 [37])
and performs P-T2I in the compressed latent space. Specifically, unlike previous MLLM-based
methodologies, λ-ECLIPSE aligns the output space of priors with CLIP vision space instead of the
CLIP text space. λ-ECLIPSE takes multiple images and text instructions as input and estimates
the respective vision embeddings, which can be used by the frozen diffusion UNet model from
the UnCLIP stack to generate the resulting image. This elevates the training time dependencies on
diffusion models for P-T2I; significantly contributing to the resource efficiency. Additionally, as
diffusion or MLLM-based priors are still compute heavy due to a huge number of parameters and
slower convergence, we build upon ECLIPSE [32] and SEED [13], which shows that text-to-image

1The designation λ-ECLIPSE is inspired by its conceptual alignment with the λ-calculus. In this context, the
λ-ECLIPSE model functions similarly to a functional abstraction within λ-calculus, where it effectively binds
variables. These variables, in our case, represent novel visual concepts that are integrated through composition
prompts. Here, ECLIPSE indicates our architecture design choice.

2



Table 1: A quick overview of previous works on P-T2I. Our method is the first to offer multi-
concept-driven generation without depending on diffusion UNet models (except for inference). We
provide the extended overview table in the appendix.

Method Multi Finetuning Diffusion Total opt. Training Dataset GPU
Concepts Free Free params Steps Size Hours

Textual Inversion [11] ✗ ✗ ✗ 768 5000 - 1
DreamBooth [39] ✗ ✗ ✗ 0.9B 800 - 0.2
ELITE [50] ✗ ✓ ✗ 77M 135K 125K 336
BLIP-Diffusion [22] ✗ ✓ ✗ 1.5B 500K 129M 2304
IP-Adapter [52] ✗ ✓ ✗ 22M 1M - 672
Custom Diffusion [20] ✓ ✗ ✗ 57M 500 - 0.1
Subject-Diffusion [28] ✓ ✓ ✗ 252M 300K 76M -
Kosmos-G [30] ✓ ✓ ✗ 1.9B 800K 200M 12300
Emu-2 [46] ✓ ✓ ✗ 37B 70K 162M -

λ-ECLIPSE (ours) ✓ ✓ ✓ 34M 100K 2M 74

mapping can be optimized through contrastive pre-training. Here, we select ECLIPSE as preferred
choice of prior architecture for best efficiency. At last, we propose a subject-driven instruction
tuning task based on the image-text interleaved data as a pre-training strategy. This involves creating
2 million high-quality image-text pairs, where text embeddings linked to subjects are substituted
with the respective image embeddings, which in return are considered as input to the λ-ECLIPSE .
While λ-ECLIPSE can be plugged with these pre-trained methods, we explore the possibility of
λ-ECLIPSE to incorporate Canny edge as an additional control to synergetically work with subject-
driven image generation tasks. Figure 1 provides the overview of λ-ECLIPSE capabilities.

Overall, we propose λ-ECLIPSE as an initial attempt to motivate future works on designing resource-
efficient solutions for MLLM-based approaches. We summarize our main contributions as follows:
1) We introduce a training-time diffusion-independent, UnCLIP-based prior learning strategy for
enabling efficient and fast multi-subject customization. 2) Extensive experiments on Dreambench,
Multibench, and ConceptBed reveal that λ-ECLIPSE (34M parameter model) trained on a mere
74 GPU hours can achieve competitive performance to that of big counterparts (having 2B-37B
parameters) and improve text-composition alignment. 3) At last, λ-ECLIPSE inherits the smooth
CLIP latent space. This allows us to perform the seamless transition between multi-concept generated
images.

2 Related Works

Text-to-Image Generative Models. Pioneering efforts in image generation, notably DALL-E [36]
and CogView [10], leveraged autoregressive models to achieve significant results. Recent advance-
ments predominantly feature diffusion models, acclaimed for their high image fidelity and diversity in
text-to-image (T2I) generation. A notable example is Stable Diffusion, which builds upon the Latent
Diffusion Model (LDM) [38] and excels in semantic and conceptual understanding by transitioning
training to latent space. Imagen [41], Pixart-α [7], and DALL-E 3 [5] propose using a large T5
language model to improve language understanding. DALL-E 2 [35] along with its UnCLIP variation
models such as Kandinsky [37] and Karlo [21], uses a diffusion prior and diffusion UNet modules to
generate images using the pre-trained CLIP [34] model.

Personalized T2I Methods. Approaches like Textual Inversion [11], DreamBooth [39], and Custom
Diffusion [20] focus on training specific parameters to encapsulate visual concepts. LoRA [16] and
Perfusion [47] target efficient fine-tuning adjustments, particularly rank 1 modifications. However,
these methods are constrained by their requirement for concept-specific tuning. ELITE [50] was
the first approach addressing fast customized generation for single-subject T2I. BLIP-Diffusion [22]
adapts the BLIP2 encoder [23], training approximately 1.5B parameters to enable zero-shot, subject-
driven image generation. IP-Adapter introduces a decoupled cross-attention mechanism, negating the
need to train the foundational UNet model by permitting fine-tuning of a reduced number of 22M
parameters.
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Figure 2: This figure illustrates the three stages of the λ-ECLIPSE pipeline. 1) Create the image-
text interleaved features using frozen CLIP. 2) Pre-train the λ-ECLIPSE (34M parameters) using
Eq. 1, which ensures the mapping to the desired latent space given the image-text interleaved data.
3) During inference, the frozen Kandinsky v2.2 diffusion UNet model takes the output from the
λ-ECLIPSE and generates the image.

Mix-of-Show [14] and Zip-LoRA [43] train individual concepts and then combine them to generate
multiple subjects. Break-A-Scene [4] shows multi-concept capability but requires single images
containing diverse objects. Subject Diffusion [28] creates a high-quality dataset and presents the
precision control for fast personalized multi-subject image generation. Kosmos-G and Emu2 [46],
akin to Subject-Diffusion [28], employs a Multimodal Large Language Model (MLLM) for text-image
embedding alignment, though it necessitates extensive parameter optimization (1.9B-37B). These
multi-subject P-T2I methods are not only demanding in terms of parameters but also depend on a
massive number of frozen parameters of the diffusion UNet model, increasing training computational
loads. In contrast, our model, λ-ECLIPSE , forgoes test-time fine-tuning and training-time reliance
on the diffusion UNet model for single and multi-concept, control-guided P-T2I, positioning it as a
resource-efficient solution.

At last, methods like GLIGEN [24], ControlNet [53], and UniControl [33] incorporate additional
controls (i.e., edge map, depth, segmentations) into the diffusion model to generate the desired images.
BLIP-Diffusion, IP-Adapter, and Kosmos-G can leverage such pre-trained controls. However, in
many scenarios, these controls are too strong, making generated images lose subject-specific details.
We show that λ-ECLIPSE learns to balance the edge map, subjects, and composition. We offer a
more comprehensive review of related works in the appendix.

3 Method

In this section, we introduce λ-ECLIPSE , our approach to multi-subject personalized text-to-image
generation. Our method combines the contrastive text-to-image strategy from ECLIPSE with the
novel image-text interleaved pretraining strategy, notably omitting the need for explicit diffusion
modeling. Our approach mainly capitalizes on the efficient utilization of the CLIP latent space.
Figure 2 outlines the end-to-end framework.

The primary objective of λ-ECLIPSE is to facilitate single and multi-subject P-T2I generation
processes, accommodating edge maps as conditional guidance. Initially, we detail the problem for-
mulation and elaborate on the UnCLIP stack design of the λ-ECLIPSE . Subsequently, we delve into
the image-text interleaved training methodology. This fine-tuning process enables the λ-ECLIPSE to
harness semantic correlations between CLIP image and text latent spaces while preserving subject-
specific visual features.

3.1 Text-to-Image Prior Mapping

In the UnCLIP T2I models, the objective of the text-to-image prior model (fθ) is to establish
a proficient text-to-image embedding mapping. This model is designed to adeptly map textual
representations to their corresponding visual embeddings, denoted as (fθ : zy → zx), where zx/y
represent the embeddings for images and text, respectively. The visual embedding predictions
(ẑx = fθ(zy)) are then effectively utilized by the diffusion image generators (hϕ), which are
inherently conditioned on these vision embeddings (hϕ : zx → x). In our experiments, we utilize the
Kandinsky v2.2 diffusion UNet model as hϕ.
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Figure 3: CLIP(vision) features capture the semantics and fine-grained visual details. Each
input is given as input to the Kandinsky v2.2 and re-generated from the decoder. (Top: Real-images,
Bottom: Canny edge)

As shown in Figure 3, the CLIP vision encoder preserves the necessary features in zx required
to reconstruct the input image and achieves a similar concept alignment score (DINO: 0.66) as
finetuning-based DreamBooth method [39].

Our goal is to accurately estimate the image embedding ẑx, incorporating the subject representations,
thereby eliminating reliance on hϕ during training. Existing LDM-based P-T2I methods are limited
by the LDM’s singular module approach (hϕ : zy → x). Consequently, mastering the latent space of
hϕ becomes essential for effective P-T2I for the baseline methodologies, which limits the previous
methodologies.

We propose a new mapping function, fθ, which processes text representations (zy) alongside subject
(xk) specific visual representations (zxk

), to derive an image embedding that encapsulates both
text prompts and subject visuals (ẑx). The challenge lies in harmonizing zxk

and zy within fθ :
(zy, zxk

) → ẑx, ensuring alignment while preventing overemphasis on either aspect, as this could
compromise composition alignment. To address this, we employ the contrastive pre-training strategy
after [32]:

Lprior = E
ϵ∼N (0,I)
zy,zxk

[
||zx − fθ(ϵ, zy, zxk

)||22
]
− λ

N

N∑
i=0

log
exp(⟨ẑix, ziy⟩/τ)∑

j∈[N ] exp(⟨ẑix, z
j
y⟩/τ)

. (1)

Here, λ serves as the hyperparameter. i and j represent the index of the given input batch with the size
N . ⟨·⟩ represents the inner-product and τ is the temperature parameter. The first loss term (projection
loss) measures the mean-squared error between the estimated and actual image embeddings, primarily
ensuring concept alignment. However, our preliminary studies reveal that exclusive reliance on this
term diminishes composition alignment. Therefore, we stick with the contrastive loss component (the
second loss term) to bolster compositional generalization, with λ balancing concept and composition
alignment.

Additional Control-based T2I Prior Mapping. Acknowledging the limitations in existing meth-
ods, which necessitate learning the diffusion latent space even for additional control inputs, we
endeavor to achieve a more nuanced balance between subject, text, and supplementary conditions.
Consequently, we have augmented λ-ECLIPSE to accommodate an additional modality, a Canny
edge map, providing more refined control over subject-driven image generation. This entails modify-
ing the prior model to accept additional conditions (f ′

θ : (zy, zxi
, zc) → ẑx, here zc symbolizes the

additional modality embedding).

During training, we drop zc for 1% to improve the unconditional generations. This enhances the
stability and broadens the generalization capabilities of λ-ECLIPSE , yielding benefits even in the
absence of these controls during inference. Our results demonstrate that λ-ECLIPSE learns a unified
mapping function, accurately estimating target image representations through the effective integration
of text, image, and edge maps.
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Figure 4: This figure illustrates a qualitative comparison of λ-ECLIPSE with contemporary
approaches for single-subject T2I generations, utilizing concepts and prompts from the Dream-
bench dataset. For each method, concept, and prompt, we generate four images and select the one
that most accurately represents the queried concept and composition.

3.2 Image-text Interleaved Training

Our approach targets developing a versatile prior model capable of processing diverse inputs to esti-
mate target visual outputs. Drawing from earlier methodologies, a straightforward solution involves
concatenating different inputs, like combining text (“a dog wearing sunglasses”) with respective
concept-specific images. Preliminary experiments indicated that this method does not effectively
capture the intricate relationships between target text tokens (e.g. “dog”) and the corresponding
concept images, especially when multiple concepts are present.

To address this, we adopt the interleaved pre-training strategy used in Kosmos-G, but with a notable
modification to enhance resource efficiency. We incorporate pretrained frozen CLIP text and vision
encoders for extracting modality-specific embeddings—separating text-only from subject-specific
images. The key refinement in our process is the substitution of subject token-specific text embeddings
with corresponding vision embeddings instead of introducing additional trainable tokens to handle
the image embeddings via resampler [2]. First, we extract reference concept visual features (zxk

∈
R1x1280) from the CLIP vision encoder. Similarly, we also extract the text prompt features (zy ∈
R77x1280) from the last layer of the CLIP text encoder. Here, 1280 is the CLIP-specific feature
dimension. At last, we replace the concept noun corresponding latent features from zy with zxk

;
resulting in image-text interleaved features while preserving the contextual information of the text
features. This alteration allows us to bypass the need to train the big priors models (e.g. MLLMs),
significantly improving the model’s proficiency in handling interleaved data.

6



For the generation of high-quality training datasets, we carefully selected 2 million high-quality
images from the LAION dataset [42], each with a resolution of 1024x1024. Utilizing BLIP2, we
generate captions for these images and employ SAM [19] for extracting noun or subject-specific
segmentation masks. Given the CLIP model’s requirement for 224x224 resolution images, we avoid
resizing the masks within their original resolutions. Instead, we opt for cropping the area of interest
using Grounding DINO [25], followed by resizing the masked object while preserving its aspect
ratio. This technique is crucial in retaining maximum visual information for each subject during the
training phase. We provide more details about the filters used in the supplementary material.

3.3 Additional Finetuning

Due to the nature of UnCLIP models, even if λ-ECLIPSE is very accurate, the diffusion UNet model
(hϕ) may not be effective in generating very unique visual representations. However, such behavior is
common across the fast P-T2I methods and they lack in terms of maintaining performance compared
to the finetuning-based methods (as outlined in Table 2). Therefore, we extend the λ-ECLIPSE and
perform concept-specific finetuning.

Compared to the traditional finetuning methodologies (such as DreamBooth), λ-ECLIPSE provides
very unique advantages. As λ-ECLIPSE prior model (fθ) is pre-trained for personalization, there is
no need for further finetuning the fθ and we need to only finetune diffusion UNet model. Importantly,
the fine-tuning of the hϕ does not depend on the text embeddings (zy). Hence, this leads to stable
fine-tuning of the hϕ; unlike DreamBooth on stable diffusion that observes catastrophic forgetting
(Section D). The new fine-tuning objective is:

Ldecoder = E
ϵ∼N(0,I)

t∼[0,T ],(zx)

[
||ϵ− hϕ(x

(t), t, zx)||22
]
. (2)

Here, zx is the visual feature of the reference concept image x. Notably, we do not need to use
regularization from the DreamBooth as text alignment is already ensured during the pretraining stage
of λ-ECLIPSE . Moreover, this finetuning can be performed across the set of given visual concepts
altogether in a single model without degrading performance.

In summary, the prior model, trained with our image-text interleaved data and supplementary condi-
tion, presents an efficient pathway for resource-efficient multi-subject-driven image generations.

4 Experiments

In this section, we first introduce the experimental and evaluation setups. Later, we delve into the
qualitative and quantitative results.

Training and inference details. We initialize our model, λ-ECLIPSE , equipped with 34M pa-
rameters. We train our model on an image-text interleaved dataset of 2M instances, partitioned
into 1.6M for training and 0.4M for validation. The model is specifically tuned for the Kandinsky
v2.2 diffusion image decoder. Therefore, we use pre-trained OpenCLIP-ViT-G/142 as the text and
vision encoders, ensuring alignment with Kandinsky v2.2 image embeddings. Training is executed
on 2 x A100 GPUs, leveraging a per-GPU batch size of 512 and a peak learning rate of 0.00005,
across approximately 100,000 iterations, summing up to 74 GPU hours. During inference, the model
employs 50 DDIM steps and 7.5 classifier-free guidance for the Kandinsky v2.2 diffusion image
generator. Adhering to baseline methodologies, we perform the P-T2I following the baseline papers’
protocols. For λ-ECLIPSE , target subject pixel regions in reference images are segmented before
embedding extraction via the CLIP(vision) encoder. We drop the Canny edge map during inference
unless specified explicitly. Unless specified all results (quantitative and qualitative) are without
concept-specific additional fine-tuning.

Evaluation setup. We primarily utilize Dreambench (encompassing 30 unique concepts with
25 prompts per concept) for qualitative and quantitative evaluations using DINO and CLIP-based
metrics [39]. Due to their limitations, we extend our evaluations on the ConceptBed [31] benchmark

2https://huggingface.co/laion/CLIP-ViT-g-14-laion2B-s12B-b42K
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Table 2: Quantitative comparisons of different methodologies on Dreambench. The Bold and
underline represent the metric-specific first and second-ranked methods, respectively. * represents
that we re-benchmark the performance from open-source weights.

Method Base Model Params GPU Hours DINO (↑) CLIP-I (↑) CLIP-T (↑)
Textual Inversion SDv1.5 768 1 0.569 0.780 0.255
DreamBooth SDv1.5 0.9B 0.2 0.668 0.803 0.305
Custom Diffusion SDv1.5 57M 0.2 0.643 0.790 0.305
BLIP-Diffusion SDv1.5 0.9B 0.1 0.670 0.805 0.302
λ-ECLIPSE * Kv2.2 0.9B 0.2 0.682 0.796 0.304

Re-Imagen Imagen - - 0.600 0.740 0.270
ELITE SDv1.4 77M 336 0.621 0.771 0.293
Subject-Diffusion SDv1.5 252M - 0.711 0.787 0.293
BLIP-Diffusion* SDv1.5 1.5B 2304 0.603 0.793 0.291
IP-Adapter* SDv1.5 22M 672 0.629 0.827 0.264
IP-Adapter* SDXL 22M 672 0.613 0.810 0.292
Kosmos-G* SDv1.5 1.9B 12300 0.618 0.822 0.250
Emu2* SDXL 37B - 0.563 0.765 0.273
λ-ECLIPSE * Kv2.2 34M 74 0.613 0.783 0.307

Table 3: Quantitative comparisons of different methodologies on ConceptBed. We present results
on CCD (↓) across three evaluation categories. The Bold and underline represent the metric-specific
first and second-ranked methods, respectively. * represents our benchmarking.

Method Base Concept Concept Composition
Model Replication (↓) Alignment (↓) Alignment (↓)

Textual Inversion SDv1.4 0.0662 0.1163 0.1436
Dreambooth SDv1.4 0.0880 0.3551 0.0360
Custom Diffusion SDv1.4 0.2309 0.4882 0.0204
ELITE* SDv1.4 0.3195 0.4666 0.1832
BLIP-DIffusion* SDv1.5 0.3510 0.3245 0.1589
IP-Adapter* SDXL 0.3665 0.3571 0.0641
λ-ECLIPSE * Kv2.2 0.2853 0.3619 -0.0200

(covering 80 diverse imagenet concepts and a total of 33K composite prompts), where we report per-
formance on concept replication, concept, and composition alignment using the Concept Confidence
Deviation (CCD) metric [31]. We extend Dreambench for multi-subject customization and present
the Multibench dataset. Multibench contains about 24 unique concepts and 15 diverse prompts that
result in 904 two-subject specific prompts and 1476 three-subject specific prompts. We provide
further details about the Multibench in supplementary materials.

4.1 Results & Analysis

Quantitative comparison. The quantitative assessments detailed in Table 2 and Table 3 focus on
the single-concept T2I task, while Table 4 shows the results on multi-concept-driven image generation.
For Dreambench and Multibench, we generate and evaluate four images per prompt, reporting average
performance on three metrics (DINO, CLIP-I, and CLIP-T). In the case of ConceptBed, we process
each of the 33K prompts to generate a single concept image. The results, as depicted in these
tables, highlight λ-ECLIPSE ’s superior performance in composition alignment while maintaining
competitive concept alignment. Analysis on ConceptBed (Table 3) indicates that λ-ECLIPSE exhibits
a notable proficiency in concept replication, albeit with a marginal trade-off in concept alignment for
enhanced composition fidelity. Comparatively, all baselines prioritize concept alignment, often at the
expense of composition alignment. While λ-ECLIPSE improves the CLIP-T while preserving the
DINO; achieved with significantly fewer resources.

However, a significant gap remains between finetuning-based and fast P-T2I methods. We fur-
ther perform concept-specific fine-tuning (as described in Section 3.3). As shown in Table 2,
λ-ECLIPSE outperforms the DreamBooth and BLIP-Diffusion in terms of concept alignment (DINO)
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Table 4: Quantitative comparisons of different methodologies on Multibench. The Bold and
underline represent the metric-specific first and second-ranked methods on each metric, respectively.

Two Subjects Three Subjects
Kosmos-G Emu2 λ-ECLIPSE Emu2 λ-ECLIPSE

DINO (↑) 0.4549 0.4451 0.4478 0.3168 0.3420
CLIP-I (↑) 0.7759 0.7397 0.7409 0.6231 0.6463
CLIP-T (↑) 0.2493 0.2673 0.3327 0.2819 0.3469

Table 5: Quantitative results of Canny edge controlled P-T2I of different methodologies on
Dreambench. The Bold and underline represent the metric-specific first and second-ranked methods,
respectively. Red highlighted numbers indicate the relative percentage drop for concept alignment
compared to Table 2.

Method DINO (↑) CLIP-I (↑) CLIP-T (↑)
BLIP-Diffusion* 0.423429.7% 0.7119 0.3152
IP-Adapter* 0.428131.9% 0.7315 0.3034
λ-ECLIPSE * 0.517314.3% 0.7437 0.3158

while maintaining the performance on composition alignment (CLIP-T). Notably, Multibench results
(Table 4) indicate that λ-ECLIPSE significantly outperforms the Kosmos-G (2B params) and Emu2
(37B params) in terms of CLIP-T while maintaining the DINO performance. Therefore, we can
conclude that λ-ECLIPSE is the most resource-efficient compared, especially when compared to the
MLLM-based methods.

Qualitative comparisons. In Figure 4, we present a range of single subject-specific images gen-
erated by various methodologies including BLIP-Diffusion, IP-Adapter, Kosmos-G, Emu2, and
λ-ECLIPSE . λ-ECLIPSE demonstrates exemplary proficiency in composition while ensuring con-
cept alignment. In contrast, the baselines often overemphasize reference images or exhibit concept
dilution, leading to higher concept alignment but compromised composition. Interestingly, we
find that Emu2 can capture the single-subjects but it fails to reproduce them with complex text
compositions (as shown in Figure 4). Similarly, Figure 6a exhibits λ-ECLIPSE ’s multi-concept gen-
eration prowess, in comparison to ZipLoRA (fine-tuning-based approach) along with Kosmos-G and
Emu2 (Multimodal LLM-based approaches), underscoring its capability to rival compute-intensive
methods. We discuss additional examples and limitations in the appendix. That said, even though
λ-ECLIPSE improves the performance over the baselines, this is still not enough and it signifies the
challenges associated with fast multi-concept personalization.

Canny edge controlled image generation. As shown in Figure 6b, the baseline (BLIP-Diffusion)
adheres strictly to the imposed edge maps, often at the cost of concept retention (rows 1, 3, and 4).
This leads to a large number of unwanted artifacts in the generated images. To further ground this
behavior, we first generated images using Stable Diffusion v1.5 for Dreambench prompts without
customization then we extracted the Canny edge map and used this edge map to control the subject-
driven image generations. At last, we report the performance in Table 5. It can be observed that
both baselines IP-Adapter and BLIP-Diffusion drop the DINO score by 30%, which follows the
qualitative results. While λ-ECLIPSE do not follow the Canny edge precisely but preserves the
concept alignment and improves the performance relatively by 21%.

Ablations. We extend our study to evaluate the individual contributions of different components
in λ-ECLIPSE . Initially, the model’s performance with solely the projection loss (referenced in
Eq.1) is assessed. Subsequent experiments involve training λ-ECLIPSE variants with varying
hyperparameters for the contrastive loss, specifically λ values of 0.2 and 0.5. A comparative analysis
of these baselines is conducted against the fully equipped λ-ECLIPSE model, which incorporates
Lprior (Eq.1) with λ = 0.2 and utilizes Canny edge maps during training. Relying solely on
projection loss results in high concept alignment but compromises compositions (Table 6). The
contrastive loss variant with λ = 0.5 enhances composition alignment at the expense of concept
alignment, whereas λ = 0.2 achieves a more balanced performance. Crucially, the integration of
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Input

A dog is wearing a hat.

A cat is wearing sunglasses at the beach.

A backpack at the park.

A dog in the boat.

ZipLora Kosmos-G OursEmu2

(a) Multi-subject qualitative examples.

Input

A dog surfing in the ocean.

A vase as the lamp.

Two cats on top of the mountain.

A sneaker.

BLIP-Diffusion Ours
Subject-only Controlled Subject-only Controlled

(b) Qualitative examples for edge-guided P-T2I.

Figure 6: Qualitative comparison between λ-ECLIPSE and other baselines.
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Table 6: Ablation studies w.r.t. to the key components of λ-ECLIPSE design. We report the concept
and composition alignment for single-subject T2I using CCD (↓) on the ConceptBed benchmark.

Model Concept Composition
Alignment (↓) Alignment (↓)

Projection loss (i.e. λ=0.0) 0.394 0.008
w/ contrastive loss (λ=0.5) 0.435 -0.043
w/ contrastive loss (λ=0.2) 0.402 -0.026
w/ edge conditions (λ=0.2) 0.362 -0.020

hat

do
g

Figure 7: Interpolation between four concepts. Here, we estimate the image embedding using
λ-ECLIPSE corresponding to each corner and then interpolate from top to bottom and left to right.
At last, we use the Kandinsky v2.2 diffusion UNet model to generate the images with fixed random
seeds from these sets of image embeddings.

Canny edge maps during training optimally balances both alignments and, specifically, improves the
concept alignment. The negative values indicate that the CCD oracle model is highly confident in
the generated images.

Multi-subject interpolation. A key attribute of the CLIP latent space is the ability to perform
smooth interpolation between two sets of embeddings. We conducted experiments to demonstrate
λ-ECLIPSE ’s ability to learn and replicate this smooth latent space transition. We selected two
distinct dog breeds (<dog1>, <dog2>) and two types of hats (<hat1>, <hat2>) as the concepts.
λ-ECLIPSE was then used to estimate image embeddings for all four possible combinations, each
corresponding to the input phrase “a <dog> wearing a <hat>.” Fig. 7 showcases a gradual and
seamless transition in the synthesized images from the top left to the bottom right. Unlike current
diffusion models, which often exhibit sensitivity to input variations requiring numerous iterations of
user interactions for desired outcomes, λ-ECLIPSE inherits CLIP’s smooth latent space. This not
only facilitates progressive changes in the conceptual domain but also extends the model’s utility by
enabling personalized multi-subject interpolations.
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5 Conclusion

In this paper, we have introduced a novel diffusion-free methodology for personalized text-to-image
(P-T2I) applications, utilizing the latent space of the pre-trained CLIP model with high efficiency.
Our λ-ECLIPSE model, trained on an image-text interleaved dataset, achieves the capability to
execute single-concept, multi-concept, and edge-guided controlled P-T2I tasks using a singular model
framework, while simultaneously minimizing resource utilization. Notably, λ-ECLIPSE sets a new
benchmark in achieving competitive performance in terms of concept and composition alignment.
Furthermore, our research illuminates the potential of λ-ECLIPSE in exploring and leveraging the
smooth latent space. This capability unlocks new avenues for interpolating between multiple concepts
and their amalgamation, thereby generating entirely novel concepts. Our findings underscore a
promising pathway to improve MLLMs to effectively control the pre-trained diffusion image models
without necessitating extra supervision.
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A Preliminaries for T2I Diffusion Models

As evidenced in numerous contemporary studies regarding T2I models, Stable Diffusion (SD) [38] has
emerged as a predominant backbone for T2I models. SD involves training diffusion models in latent
space, reversing a forward diffusion process that introduces noise into the image. A notable feature
of SD is its integration of cross-attention, facilitating various conditions like text input. Operating in
VQ-VAE latent space, SD not only achieves exceptional generative performance surpassing that in
pixel space but also significantly reduces the computational demands.

UnCLIP models (such as DALL-E 2) are very similar to the Stable Diffusion. In contrast, the UnCLIP
takes the modular approach. UnCLIP first trains the diffusion text-to-image to the image prior (fθ) to
estimate the image embeddings (zx) from the text embeddings (zy). In parallel, a UNet-like diffusion
image generator (hϕ) is trained to generate images (x) conditioned on ground truth vision embeddings
(zx).

Traditionally, T2I prior is modeled to estimate x0-prediction instead of ϵ-prediction. Given the
forward function z

(t)
x ∼ q(t, zx), the goal of fθ is to directly estimate zx for all timesteps t ∼ [0, T ]

as:
Lprior = E

t∼[0,T ],

z(t)
x ∼q(t,zx)

[
||zx − fθ(z

(t)
x , t, zy)||22

]
. (3)

ECLIPSE proposes the contrastive learning strategy (Eq. 1 – main paper) instead of minimizing Eq. 3.
The diffusion image generator is trained by following standard ϵ-prediction formulation. Here, hϕ

will estimate the ground truth added Gaussian noise ϵ ∼ N(0, I), given the noise image X(t) for all
timesteps t ∼ [0, T ] and input conditions (such as zx, zy).

Ldecoder = E
ϵ∼N(0,I)
t∼[0,T ],
(zx, zy)

[
||ϵ− hϕ(x

(t), t, zx, zy)||22
]
. (4)

For models like Kandinsky v2.2, we drop the zy to condition the model on zx. Therefore,
λ-ECLIPSE also only conditions the image generation with zy in the prior stage.

B Image-Text Interleaved Training Details

Dataset Creation In constructing the dataset, we adhered to the data processing pipeline of Subject
Diffusion [28]. We utilized the LAION-5B High-Res dataset, requiring a minimum image size of
1024x1024 resolution. Original captions were replaced with new captions generated by BLIP-2
(flan-t5-xl)3. Subjects were extracted using Spacy4. For each subject, we identified bounding boxes
employing Grounding DINO [25], setting both box-threshold and text-threshold values to 0.2. We
retained images with 1 to 8 detected bounding boxes, discarding the rest. Additionally, captions
with multiple instances of identical objects were filtered, allowing a maximum of 6 identical objects.
Following bounding box detection, individual subject masks were isolated using Segment-Anything
(SAM) [19]. To enhance the efficiency of the training process, we pre-processed the dataset by
pre-extracting features from CLIP vision and text encoders. During this phase, images predominantly
featuring a background (white portion) exceeding 10% of the total area were excluded. We preserved
bounding boxes with a width-height ratio ranging from 0.08 to 0.7 and logit scores of at least 0.3.
Masks constituting less than 40% of the bounding box area were discarded. For the selection of
subjects in images, we constrained the range to 1-4 subjects per image, excluding those with more
than 4 subjects. At last, the interleaved image-text examples with respective ground truth images are
shown in Figure 8.

Dataset Statistics In the final analysis, our dataset comprised a total of 1,990,123 images. The
distribution of subjects per image exhibited a range from 1 to 4, with the following breakdown:
1,479,785 images featuring one subject, 432,831 images with two subjects, 65,597 images containing

3https://huggingface.co/Salesforce/blip2-flan-t5-xl
4https://spacy.io
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A wearing in the park.

A wearing a Santa hat.

A on top of the         near the river.

Figure 8: Examples of image-text interleaved training data. The left column shows the input of
the prior model and the right images shows the ground truth corresponding images. Note: these
examples are generated from λ-ECLIPSE for better interpretability.

three subjects, and 11,910 images showcasing four subjects. The overall count of unique subjects
acquired from this dataset amounted to 30,358. We partitioned our dataset into an 80:20 split between
training and validation, reserving the remaining 1.6 million images for training and the rest for
validation.

C Implementation Details

The λ-ECLIPSE transformer prior architecture is significantly more compact compared to other
Text-to-Image (T2I) methodologies. Our model employs a configuration of 16 Attention Heads, each
with a dimension size of 32, alongside a total of 10 layers. Additionally, the embedding dimension
size for our model is set at 1280, supplemented by 4 auxiliary embeddings (including, one for canny
edge map). As λ-ECLIPSE is not a diffusion prior model, we do not keep time embedding layers.
Overall, the λ-ECLIPSE model comprises approximately 34 million parameters, establishing it as a
streamlined yet effective solution for Personalaized-T2I. Notably, the standard UnCLIP T2I priors
contain 1 billion parameters.

D λ-ECLIPSE with Finetuning

As demonstrated in the main paper (Table 2), the superiority of fine-tuning-based personalization
methodologies, whether applied to single-subject or multi-subject frameworks, over non-fine-tuning
alternatives is evident. Consequently, we have expanded our analysis through additional fine-tuning
of the λ-ECLIPSE .

Experimental Setup. Given that λ-ECLIPSE effectively trains the T2I prior, capturing concept-
specific features to a significant degree, we opted not to further optimize this component. Our focus
shifted to exclusively fine-tuning the diffusion UNet model (hϕ), employing the AdamW optimizer
at a learning rate of 1e-5, without warm-up steps. For the DreamBooth application within the
Stable Diffusion v1.5 model, we selected a learning rate of 5e-6, maintaining consistency in other
hyperparameters. To simplify, we excluded the use of a prior preservation regularizer and conducted
training on the Dreambench platform using a single RTX A6000 GPU.

Results. Our findings, illustrated in Figure 9, reveal that λ-ECLIPSE and DreamBooth exhibit
improved performance with incremental fine-tuning steps. Notably, the DINO score improved
from 0.61 to 0.68 with few optimization steps and outperforms the baselines (see Table 2). A
detailed analysis indicates that while DreamBooth’s DINO score improves, its CLIP-T performance
diminishes, hinting at concept overfitting. Conversely, λ-ECLIPSE consistently improves in DINO
scoring without adversely impacting the CLIP-T performance, underscoring the efficacy of our
image-text interleaved training approach at the prior stage. Qualitative comparisons, as shown in
Figure 10, further highlight the benefits of fine-tuning λ-ECLIPSE with minimal steps.
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Figure 9: DreamBooth (Stable Diffusion v1.5) vs. λ-ECLIPSE (with fine-tuning) w.r.t. DINO and
CLIP-T metrics on Dreambench.

Advantages of fine-tuning λ-ECLIPSE . The fine-tuning of λ-ECLIPSE , in comparison to the
baselines, reveals two key benefits: 1) Achieving state-of-the-art (SOTA) performance within a few
finetuning steps. 2) Unlike the Stable Diffusion model, which exhibits catastrophic forgetting of
nearby concepts post-DreamBooth fine-tuning, λ-ECLIPSE maintains previous knowledge. This
suggests that a single model is sufficient to effectively fine-tune across multiple concepts together.

This analysis underscores the strategic advantages and enhanced efficiency of fine-tuning
λ-ECLIPSE for personalized applications in complex visual data processing.

E Extended P-T2I Baselines Comparison

We further expand our comparative analysis of P-T2I methods encompassing a total of 33 approaches
including ours and parallel works. Table 7 summarizes them into four crucial aspects: 1) multi-subject
support, 2) fine-tuning free, 3) base model types, and 4) the required number of input images. To
summarize, λ-ECLIPSE is the only methodology built on top of the UnCLIP models while supporting
multi-subject driven image generation with fine-tuning free, and only requires a single reference
image input for the training. We detail the comparison below:

Multi-Subject Generation. Multi-subject generation enables users to integrate multiple personal
subjects to generate an image that follows the text prompts and aligns with all the concept visuals.
In total, 15 of the 33 methods offer this capability, while 6 methods support fast multi-subject
personalization, others demand separate training for each subject to be learned and then an additional
fusing step for combining the learned subjects is required (i.e. Zip-LoRA, Mix-of-Show). Among
these methods, only a few can learn auxiliary guided information such as canny edge, depth maps, or
open-pose and adapt style variation (i.e. Kosmos-G).

Fine-tuning Free (Fast Personalization). Many methods require test-time fine-tuning. Each varies
on which part alteration occurs, as early models tend to modify the whole UNet. In contrast, recent
models tune a small portion of the cross-attention layers or introduce additional layers performing as
adapters. In our analysis of P-T2I methodologies, 14 out of 33 methods employ a finetuning-free
approach which enables fast personalization.

Diffusion Independent. A majority of the reviewed models utilize diffusion models, with Stable
Diffusion being the predominant choice, spanning versions 1.4, 1.5, 2.1, and XL. Few adapt Imagen
(SuTi, Taming) and Mix-of-show employs ChillOutMix as their pre-trained model, known for its
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Table 7: The detailed overview of subject-driven text-to-image generative methodologies. *
represents the backbone base models listed are subject to potential updates or modifications.

Method Multi-Subject Finetuning-Free Base-Model # of Input Images

Re-Imagen [9] ✗ ✓ Imagen Single
Textual Inversion [11] ✗ ✗ SDv1.4 Multiple

DreamBooth [39] ✗ ✗ SDv1.4 Multiple
Custom Diffusion [20] ✓ ✗ SDv1.4 Multiple

ELITE [50] ✗ ✓ SDv1.4 Single
E4T [12] ✗ ✗ SD Single

Cones [26] ✓ ✗ SDv1.4 Single
SVDiff [15] ✓ ✗ SD Multiple

UMM-Diffusion [29] ✗ ✓ SDv1.5 Single
XTI [49] ✗ ✗ SDv1.4 Multiple

Continual Diffusion [45] ✓ ✗ - Multiple
InstantBooth [44] ✗ ✓ SDv1.4 Multiple

SuTi [8] ✗ ✓ Imagen Multiple
Taming [17] ✗ ✓ Imagen Single

BLIP-Diffusion [22] ✗ ✓ SDv1.5 Single
Cones 2 [27] ✓ ✗ SDv2.1 Single

DisenBooth [6] ✗ ✗ SDv2.1 Single
FastComposer [51] ✓ ✓ SDv1.5 Single

Perfusion [47] ✓ ✗ SDv1.5 Multiple
Mix-of-Show [14] ✓ ✗ Chilloutmix Multiple

NeTI [1] ✗ ✗ SDv1.4 Mulitple
Break-A-Scene [4] ✓ ✗ SDv2.1 Single*

ViCo [48] ✗ ✗ SDv1.4 Mulitple
Domain-Agnostic [3] ✗ ✗ - Single

Subject-Diffusion [28] ✓ ✓ SDv2 Single
HyperDreamBooth [40] ✗ ✗ SDv1.5 Single

IP-Adapter [52] ✗ ✓ SDv1.5 Single
Kosmos-G [30] ✓ ✓ SDv1.5 Single
Zip-LoRA [43] ✓ ✗ SDXL Multiple
CatVersion [55] ✗ ✗ SDv1.5 Multiple

SSR-Encoder [54] ✓ ✓ SDv1.5 Single
Emu2 [46] ✓ ✓ SDXL Single

λ-ECLIPSE (ours) ✓ ✓ Kv2.2 Single

adeptness at preserving realistic concepts like human faces. A unique outlier in this landscape is our
λ-ECLIPSE , the only one that eschews the use of any diffusion prior model.

Easiness of Use. A more user-friendly model typically requires a single reference image per subject,
as opposed to multiple images of the same subject. In our study, 19 methods offer P-T2I capabilities
with just one input image. In contrast, others often require 4 to 5 images of the subject. Additionally,
some methods necessitate storage space for learned concepts, ranging from a few hundred kilobytes
(e.g., Perfusion, HyperDreamBooth) to several megabytes (e.g., Zip-LoRA). Our method stands
out by eliminating the need for individual concept pre-learning or storing any artifacts for P-T2I
utilization, offering a streamlined, efficient user experience.

F Multibench Dataset

We provide additional qualitative results in Figure 5. For the multi-subject image benchmark, our
dataset comprises 2,308 unique prompts, segmented into 904 two-subject and 1,476 three-subject
prompts. This dataset integrates subjects from the original DreamBench dataset, featuring 30 distinct
concepts. We expanded the dataset by incorporating additional concepts vital for two and three
subject-specific prompts, such as various parks, hats, glasses, and more. Prompt templates and the
count of unique subject categories featured in prompts are detailed in Tables 8 and 9, respectively.
Overall, the dataset includes 217 two-subject compositions and 405 three-subject compositions,
enriching the benchmark’s diversity and comprehensiveness.

20



Table 8: Example of prompt templates used for Multibench dataset. Subjects presented in Table 9
are placed in {}.

Two subjects Three subjects

{} in the {} {} with a {} and {}
{} wearing a {} {} is playing with {} in {}
{} chasing a {} {} with {} in front of {}
{} looking at a {} {} with a {} and a view of the {}
{} is sitting on a {} {} with a {} and {} in the background
{} standing on a {}
{} and {} playing in the garden
{} and {} on top of the mountain
{} and {} in the jungle
{} and {} in the snow
{} and {} on the beach
{} and {} on a cobblestone street
{} and {} standing next to each other

Table 9: Number of occurrences of unique subject categories. The left side of the table are subjects
used for two subjects prompts, and the right side of the table are subjects used for three subjects
prompts.

Two subjects Three subjects

dog 76 boat 5 dog 81 rainbow 35
cat 76 park 4 stuffed animal 105 ruins 35
bird 76 ruins 9 toy 105 tower 35
horse 73 castle 5 cat 81 horse 81
guinea pig 73 desert 4 desert 60 bird 81
glasses 5 rainbow 5 hill 60 guinea pig 81
hat 5 candle 5 castle 45 guitar 25
tower 10 backpack 3 backpack 65 french horn 25

can 130 vase 25
candle 65 robot 25
church 35

G Qualitative Results & Failure Cases

In this section, we showcase a collection of detailed qualitative examples from the P-T2I generation
process, highlighting the challenges of crafting complex compositions within λ-ECLIPSE and com-
parative models. As depicted in Figure 11, the complexity of the showcased examples progressively
increases, illustrating a noticeable escalation in the intricacy of visual concepts from the top to the
bottom of the figure. With the rising complexity, we note a universal decline in the ability of all
methodologies, including λ-ECLIPSE , to preserve subject fidelity accurately. Interestingly, despite
these challenges, λ-ECLIPSE demonstrates a better grasp of compositional integrity, unlike the
baseline models which falter across all complexity levels.

Moreover, we present instances demonstrating the variability in outcomes produced by P-T2I methods
across different trials. As illustrated in Figure 12, while there is a semblance of consistency in
generating single and multiple concepts between models, Kosmos-G specifically shows variability
in rendering multiple concepts—occasionally misplacing elements of the Ironman suit on a dog
or failing to include it altogether. This phenomenon suggests that λ-ECLIPSE minimizes image
diversity to enhance result consistency, a trait observed across the UnCLIP model family.

Figure 10 offers qualitative insights into the performance of λ-ECLIPSE without and with minimal
fine-tuning. It is evident that in certain edge cases, where λ-ECLIPSE initially struggles to fully grasp
novel visual concepts without finetuning, a modest application of few optimization iterations signifi-
cantly enhances concept capture. Further optimization not only preserves text composition but also
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enriches minor, subject-specific details, underscoring the adaptability and finesse of λ-ECLIPSE in
nuanced image generation.

Moreover, in our evaluations using the Multibench dataset, we noticed that both the baseline models
(Kosmos-G and Emu2) and λ-ECLIPSE encounter difficulties in precisely maintaining all subject-
specific details, as depicted in Figure 14. This underscores that zero-shot multi-subject P-T2I
generation remains a significant challenge in the field. Further, we explored how well each model
preserves genuine human facial characteristics in various scenarios, particularly when combined
with differing captions. The qualitative examples in Figure 13 shed light on this aspect. Although
each model strives to maintain the original facial features, none succeeds in replicating the specific
personal facial details accurately. These instances typically fall short of precisely conveying the
intended compositions, with the exception of one scenario in IP-Adapter FaceID, indicating a notable
area for future improvements in model performance.

H Limitations

Our work marks a pioneering venture into leveraging the latent space of pre-trained CLIP models
for P-T2I generation. Nonetheless, it’s crucial to recognize certain constraints. Primarily, despite its
strengths, CLIP’s inability to perfectly capture hierarchical representations occasionally leads to less-
than-ideal results. This issue, stemming from the CLIP contrastive loss, can cause deviations from
the original subject features, particularly when generating P-T2I for complex subjects like human
faces. We believe that enhancing CLIP’s representations could significantly boost our framework’s
efficacy in P-T2I mapping. The λ-ECLIPSE model, trained on 34 million parameters and 1.6 million
images, presents a substantial foundation. Yet, there’s potential for further refinement, as increasing
the quality of data and the number of parameters could yield even better outcomes.

I Broader Impact

Subject-driven image generation or Personalized Text-to-Image (P-T2I) methods have the potential
to be a transformative tool in numerous domains. For their positive influence, they enable users to
effortlessly generate, modify, and synthesize original subjects into diverse environments, thereby
enriching creative expression. On the other hand, the ease of altering and creating images raises
concerns about the responsible use of this technology which requires significant ethical and legal
considerations. Users must be acutely aware of being able to infringe intellectual property rights
and create misleading or harmful content. We recommend developers provide a more secure way
such as image attribution [18] for end-users to ensure accountability for misuse of such models. As
such, those employing subject-driven image-generation techniques should exercise careful judgment,
ensuring that their work adheres to ethical standards and legal boundaries. It is imperative that the
broader implications of this technology are considered, and that a commitment to responsible and
conscientious use guides its application.

22



A backpack
with a blue 
house in the 
background.

Input Without
finetuning

A toy on the 
beach.

A backpack on 
a cobblestone 
street.

A clock in the 
snow.

Steps=100 Steps=200 Steps=300 Steps=400

Figure 10: Qualitative examples of λ-ECLIPSE without finetuning and different stages of finetuning.
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Figure 11: Qualitative examples of the increasing complexity of novel visual concepts as we move
from top to bottom.
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Figure 12: Qualitative examples of showcasing the consistency comparisons between Kosmos-G and
λ-ECLIPSE .

A man with 
the shield.

A man with 
the hammer.

A man drinking 
beer.

Input IP-Adapter
FaceID

IP-Adapter
(SDXL)Kosmos-G Ours

Figure 13: Qualitative examples of showcasing the failure cases on human faces on Kosmos-G,
IP-Adapter (SDXL), IP-Adapter (FaceID), and λ-ECLIPSE .

Input

A backpack at the ruins.

Kosmos-G OursEmu2

A dog chasing the cat.

Figure 14: Qualitative examples of showcasing the failure cases on Multibench of Kosmos-G, Emu2,
and λ-ECLIPSE .
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